從當前的大數據就業狀況分析,大數據行業從業人員,學歷水平以本科為主,并且隨著整體趨勢的發展,也有越來越多的碩士研究生進入此行業。大數據是一門緊跟時代趨勢,且科技含量很高的行業領域,所以學習大數據,建議要在大專以上學歷,本科最佳。
大數據工作當中實操能力是非常關鍵的,計算機相關專業的學生,在校期間主要是理論上的學習偏多,因此在即將畢業之時,就容易迷茫找不到未來的發展方向。計算機相關專業的學生,在學習大數據上有天然的優勢,畢竟已經有了一定的專業基礎,學起來入門也會快很多。
大數據的應用
文件識別領域。我國圖書眾多,數據資料龐大,具有很多的價值信息,但是讀者卻很難從其中找到自己的興趣點。但資料數據量過于龐大,面對這一難題,基于大數據,采取自動提取算法,為數據檢索提供很大的幫助。從大數據的語義模型定義及基于該模型的知識圖譜技術,進行大數據的語義檢索,以及通過詞語之間的含義進行最大化聚類,初步完成了系統的構建,并用于實戰。
課程大綱 | 課題名稱 | 課程內容 |
前導基礎 | 數據分析入門 |
數據分析入門 ;數據分析的意義;數據分析的流程控制 ;數據分析的思路與方法 |
邏輯為先—XMIND |
xmind簡介與基本使用;學習方法課堂案例;滴答拼車實戰演練;其他思維導圖介紹 |
|
專業展現—PPT |
專業展現——PPT;基本簡介;幾個不得不說的真相;經驗分享;實戰動畫 |
|
數據分析工具安裝與環璄配置 |
Excel工具的安裝、配置與環璄測試;Power BI工具的安裝、配置與環璄測試;Tableau工具的安裝、配置與環璄測試;MySQL數據庫的安裝、配置與環璄測試;SPSS數據挖掘工具安裝、配置與環璄測試;SAS數據挖掘工具安裝、配置與環璄測試;Python開發工具的安裝、配置與開發環璄測試 |
|
Linux基礎應用之大數據必知必會 | ||
數據分析的Python語言基礎 |
python課程的目的;使用JupyterLab;python數據類型 ;元組、列表、字典;python分支結構 ;python字符串處理+隨機函數;pthon循環結構;python面向過程函數操作;python面向對象 |
|
問題定義與數據獲取 | 數據分析項目流程 |
問題界定;問題拆分 ;指標確定;數據收集;報告方案 ;趨勢預測;數據分析;趨勢預測;報告方案 |
問題的定義 |
邊界:明確問題的邊界;邏輯:確定業務的關鍵指標和邏輯;定性分析與定量分析 |
|
分析問題的模型 |
基于經典的模型:5W2H;SWORT;4P管理模型;CATWOE;STAR原則、波士頓5力模型。 基于業務的模型:用戶畫像;銷售影響因素;市場變化因素;AARRR流量模型;金定塔思考方法 |
|
數據清洗與處理 |
數據科學過程 ;數據清洗定義;數據清洗任務;數據清洗流程;數據清洗環境;數據清洗實例說明;數據標準化;數據格式與編碼;數據清洗常用工具;數據清洗基本技術方法;數據抽取;數據轉換與加載 |
|
內部數據的獲取 |
產品數據;用戶數據;行為數據 ;訂單數據 |
|
外部公開數據 |
開放網站;政務公開數據;數據科學競賽;數據交易平臺;行業報告;指數平臺 |
|
Web網站數據抓取 |
財經數據抓取;投資數據抓取;房產數據抓取;輿情數據抓取;娛樂數據抓取;新媒體數據抓取 |
|
數據查詢與提取 | SQL基礎操作 |
建庫 ;建表;建約束 ;創建索引;添加、刪除、修改數據 |
利用SQL完成數據的預處理 |
缺失值處理:對缺失數據行進行刪除或填充;重復值處理:重復值的判斷與刪除;異常值處理:清除不必要的空格和異常數據 |
|
利用SQL進行業務數據查詢 |
利用SQL進行簡單的業務數據查詢;利用SQL完成復雜條件查詢;利用多表關聯完成復雜業務查詢;利用嵌套子查詢完成復雜業務數據分析 |
|
高級SQL分析 |
聚合、分組、排序;函數;行列轉換;視圖與存儲過程 |
|
業務指標統計分析 |
業務數據表關聯查詢及查詢;結果縱向融合;常業務需求數據寬表構建;查詢處理復雜業務 |
|
數理統計基礎 | 數據分析的數學基礎 |
計算和連續函數的性質;導數/微分的概念和運算法則;積分的概念和運算法則;冪級數、泰勒級數、傅里葉級數、傅里葉變換;向量的概念和運算;矩陣的轉置、乘法、逆矩陣、正交矩陣、SVD奇異值分解、特征值;行列式的計算和性質;凸優化 |
Python數據分析 | 基于Numpy庫的Python數據科學計算 |
創建數組;切片索引;數組操作;字符串函數;數學函數;統計函數 |
基于Pandas庫的Python數據處理與分析 |
直方圖:探索變量的分布規律;條形圖:展示數值變量的集中趨勢;散點圖:表示整體數據的分布規律;箱線圖:表示數據分散性,中位數;提琴圖:分位數的位置及數據密度;回歸圖:尋找數據之間的線性關系;熱力圖:表未數值的大小或者相關性的高低 |
|
大數據分析 | HIVE大數據查詢平臺搭建 |
大數據概述;數據集群; Hadoop 架構;Hive開發環璄搭建 |
HIVE與MySQL進行數據交換 |
從MySQL中導入數據到Hive;從Hive導出數據到MySQL |
|
HQL海量業務數據需求查詢 |
Hive數倉;HQL 數據查詢基礎語法 |
|
HQL海量業務數據需求查詢 |
從MySQL中導入數據到Hive;從Hive導出數據到MySQL |
|
HQL業務數據指標統計分析 |
分區表;分桶表;關聯表;數據查詢 |
|
HQL海量數據查詢優化 |
內置函數及開窗函數;特殊類型數組查詢方式;HQL 查詢語句優化技巧 |
|
建模與數據挖掘 | 數據挖掘與分析算法 |
描述統計;相關分析;判別分析;方差分析;時間序列分析;主成分分析;信度分析 ;因子分析;回歸分析;對應分析;列聯表分析;聚類分析 |
數據挖掘工具SPSS |
從MySQL中導入數據到Hive;從Hive導出數據到MySQL |
|
HQL海量業務數據需求查詢 |
課程規劃與簡介;數據挖掘項目生命周期;簡單的統計學基礎 ;用Modeler試手挖掘流程;數據挖掘的知識類型 6、商業分析基礎簡介;信度分析;因子分析;回歸分析 ;對應分析;列聯表分析 ;聚類分析 |
|
數據挖掘工具SAS |
SAS概述:SAS簡介與教育版安裝;SAS概述:教育版基本使用;SAS編程基礎 ;SAS編程基礎-循環;SAS數據集操作1-合并;SAS數據集操作72-排序與對比;SAS數據集操作3-查重與篩選;練習-斐波那契數列;練習-百元百雞問題 |
|
人工智能預測算法 | 人工智能實戰十大預測數據算法 |
機器學習入門;sk-learn機器學習庫;十大預測算法原理與使用場景;算法調用、參數設置;特征選擇、特征工程;回歸預測模型實戰;分類預測試模型實戰 ;聚類模型實戰;集成學習 ;模型優化 |
可視化商業報告撰寫 | 商業智能與可視化分析實戰 |
案例-2:BI電商數據客戶分析項目實戰 案例-3:BI可視化關于公司運營情況的相關分析 案例-4:基于Tableau的客戶主題對客戶進行合理分群 案例-5:基于Tableau的營銷主題分析如何衡量媒體的營銷價值 案例-6:基于Tableau的保公司索賠情況分析 |
數據可視化報告撰寫 |
數據可視化的概念;數據可視化的意義;數據可視化的對比;數據可視化的分類;數據可視化圖表舉例 ;數據可視化應用領域;數據可視化步驟;數據可視化工具梯度;圖表呈現流程;數據報告撰寫 |
|
實戰:O2O電商平臺功能優化效果評估及可視化數據分析報告撰寫 |
了解電商業務背景;、以客戶分析為應用場景,對數據進行加載、清洗、分析及模型建立;以貨品分析為應用場景,針對品類銷售及商品銷售進行分析;以流量分析為應用場景,針對流量渠道及關鍵詞做有效分析;根據業務實際背景做輿情分析;將分析結果及建議制成報告進行發布 |
|
商業分析項目實戰 | 五大商業項目實戰 |
商業項目實戰01:電商數據分析——分析方式之漏斗模型及數據量化 商業項目實戰02:電商用戶行為與營銷模型實戰 商業項目實戰03:金融風控模型的構建與分析實戰 商業項目實戰04:展會電話邀約項目數據分析實戰 商業項目實戰05:零售行業數據分析 |
大數據主要有哪些特性? 基礎知識有哪些?
零基礎零經驗的小白學能入行大數據嗎?
大數據收入高嗎?大專學歷薪資能過萬嗎?
大數據發展趨勢
數據的資源化:是指大數據成為企業和社會關注的重要戰略資源,并已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。
與云計算的深度結合:大數據離不開云處理,云處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平臺之一。自2013年開始,大數據技術已開始和云計算技術緊密結合,預計未來兩者關系將更為密切。
課程背景
在當今數字化時代,大數據技術已經成為了企業和組織發展的重要驅動力。為了滿足市場對大數據專業人才的需求,我們秉承著“專注、務實、創新”的教學理念,開設了深圳大數據專業培訓學校。
課程特色
1. 實戰項目實踐,結合真實案例進行數據分析與處理。
2. 與行業內知名企業合作,為學生提供實習機會。
3. 專業導師團隊,教學經驗豐富,授課內容貼近市場需求。
課程目標
1. 掌握大數據基礎理論與實踐技能。
2. 熟練運用各類數據處理工具和技術。
3. 能夠獨立完成大數據項目的規劃、實施與分析。
學習對象
1. 對大數據技術感興趣的在校大學生。
2. 從事數據分析、運營管理等相關行業的職場人士。
課程內容
1. 數據采集與清洗。
2. 數據分析與挖掘。
3. 數據可視化與可視分析。
師資力量
我們擁有一支由業內專業講師和優秀講師組成的師資團隊,為學員提供專業、系統的指導和教學支持。
教學質量
我們注重教學質量和教學效果,通過定期考核和反饋,確保學員能夠獲得全面的技能提升和知識更新。
服務水平
我們秉承“學員至上,服務第一”的原則,為每位學員提供個性化的學習計劃和優質的服務體驗。
學習時長
課程學習時長為3個月至6個月。
收費范圍
學費收費范圍為4000元至15000元。
學習收獲
通過本機構的深圳大數據專業培訓學校的學習,學員將能夠掌握大數據技術,提升就業競爭力,實現個人職業發展的突破。
總結
以上信息僅供參考,實際情況以到校咨詢為準。可聯系在線客服,預約免費體驗課。深圳大數據專業培訓學校期待與您攜手共進,共同探討大數據領域的未來發展趨勢。
培訓項目:軟件測試培訓、Web前端培訓、Java全棧開發培訓、Python全棧開發培訓、超全棧開發培訓、人工智能培訓、數據分析培訓、.Net培訓、大數據云計算培訓
¥詢價1423人關注
¥詢價1447人關注
¥詢價1643人關注
¥詢價2803人關注
¥詢價1759人關注
¥詢價4564人關注
¥詢價3124人關注
¥詢價1549人關注